специальные функции, применяемые для изучения физических явлений в пространственных областях, ограниченных сферическими поверхностями, и для решения физических задач, обладающих сферической симметрией. С. ф. являются решениями дифференциального уравнения
,
получающегося при разделении переменных в Лапласа уравнении (См.
Лапласа уравнение) в сферических координатах
r, θ, φ. Общий вид решения:
,
где
am - постоянные,
- присоединённые
функции Лежандра степени
l и порядка
m, определяемые равенством:
,
С. ф. можно рассматривать как функции на поверхности единичной сферы. Функции
образуют полную ортонормированную систему на сфере, играющую ту же роль в разложении функций на сфере, что тригонометрическая система функций {e imφ} на окружности. Функции на сфере, не зависящие от координаты φ, разлагаются по зональным С. ф.:
С. ф. степени l
при вращении сферы линейно преобразуется по формуле:
(1)
(
q-1M - точка, в которую переходит точка
М сферы при вращении
q-1)
. Коэффициенты
являются матричными элементами неприводимого унитарного представления веса
l группы вращения сферы. Их называют также обобщёнными С. ф. Обобщённые С. ф. применяются при разложении векторных и тензорных полей на единичной сфере, решении некоторых задач теории упругости и т. д.
С формулой (1) связана теорема сложения для зональных С. ф.:
,
где cos γ = cos θ cos θ' + sinθ sinθ' cos (φ -φ'), γ - сферическое расстояние точки (θ, φ) от точки (θ', φ').
Характерным примером многочисленных приложений С. ф. к вопросам математической физики и механики является применение их в теории потенциала. Пусть
- поверхностная плотность распределения массы по сфере радиуса
R с центром в начале координат; если
а можно разложить в ряд С. ф.
, сходящийся равномерно на поверхности сферы, то потенциал, соответствующий этому распределению масс, в каждой точке (
r,
θ, φ), внешней относительно данной сферы, равен
а в каждой точке, внутренней по отношению к сфере, равен
Общий член каждого из этих двух рядов представляет собой шаровую функцию (См.
Шаровые функции)
соответственно степени
n - 1 и
n.
Лит.: Бейтмен Г., Эрдей и А., Высшие трансцендентные функции, пер. с англ., т. 1-2, М., 1973; Никифоров А. Ф., Уваров В. Б., Основы теории специальных функций, М., 1974; Гобсон Е. В., Теория сферических и эллипсоидальных функций, пер. с англ., М., 1952; Lense J., Kugelfunktionen, 2 Aufl., Lpz., 1954.